Extremes of the standardized Gaussian noise

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremes of Independent Gaussian Processes

For every n ∈ N, let X1n, . . . , Xnn be independent copies of a zero-mean Gaussian process Xn = {Xn(t), t ∈ T}. We describe all processes which can be obtained as limits, as n → ∞, of the process an(Mn − bn), where Mn(t) = maxi=1,...,n Xin(t) and an, bn are normalizing constants. We also provide an analogous characterization for the limits of the process anLn, where Ln(t) = mini=1,...,n |Xin(t)|.

متن کامل

Extreme-Value Analysis of Standardized Gaussian Increments

Let {Xi, i = 1, 2, . . .} be i.i.d. standard gaussian variables. Let Sn = X1 + . . . + Xn be the sequence of partial sums and Ln = max 0≤i<j≤n Sj − Si √ j − i . We show that the distribution of Ln, appropriately normalized, converges as n → ∞ to the Gumbel distribution. In some sense, the the random variable Ln, being the maximum of n(n+1)/2 dependent standard gaussian variables, behaves like t...

متن کامل

Extremes of a Class of Non-homogeneous Gaussian Random Fields

This contribution establishes exact tail asymptotics of sup(s,t)∈E X(s, t) for a large class of non-homogeneous Gaussian random fields X on a bounded convex set E ⊂ R, with variance function that attains its maximum on a segment on E. These findings extend the classical results for homogeneous Gaussian random fields and Gaussian random fields with unique maximum point of the variance. Applicati...

متن کامل

Extremes of Gaussian processes over an infinite horizon

Consider a centered separable Gaussian process Y with a variance function that is regularly varying at infinity with index 2H ∈ (0, 2). Let φ be a ‘drift’ function that is strictly increasing, regularly varying at infinity with index β > H, and vanishing at the origin. Motivated by queueing and risk models, we investigate the asymptotics for u→∞ of the probability P (sup t≥0 Yt − φ(t) > u) as u...

متن کامل

Exact Convergence Rate for the Maximum of Standardized Gaussian Increments

We prove an almost sure limit theorem on the exact convergence rate of the maximum of standardized gaussian random walk increments. This gives a more precise version of Shao’s theorem (Shao, Q.-M., 1995. On a conjecture of Révész. Proc. Amer. Math. Soc. 123, 575-582) in the gaussian case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2011

ISSN: 0304-4149

DOI: 10.1016/j.spa.2010.11.007